The New Math Stumbling Blocks

The New Math

Stumbling Blocks

The change from solving equations to analyzing functions seems benign, but that has not stopped the Common Core from becoming a charged political issue. Currently 42 states plus the District of Columbia use the standards, with adoption motivated in part by financial incentives provided by the Obama administration’s Race to the Top initiative — a top-down tactic that has helped fuel blowback. There have been plenty of other complications, too, from parents complaining that they don’t know how to help their first-graders with their math homework, to concerns that the assessments that accompany the Common Core are too hard. As a result, even stalwart adopters are questioning whether the standards work. In December 2015, Governor Andrew Cuomo of New York announced that his state would undertake a “total reboot” of the Common Core math standards in the coming years.









The designers of NGSS, which came out three years after the Common Core without any kind of federal mandate, say they learned from the contentious rollout of the earlier standards. So far, 17 states plus the District of Columbia have adopted NGSS and 11 more states have implemented standards that are similar to varying degrees.

“The Common Core got people to sign on and implement standards before the standards were there, and I think that backfired,” Schweingruber said. “I feel like the intent of the standards is to improve what happens to kids in classrooms, and if that happens even before a state formally adopts, that’s fine with me.”

Still, NGSS has had its controversies. The document includes standards related to climate change and evolution, which has motivated opposition in conservative states. And, politics aside, the standards necessitate sweeping changes to the way science is taught.

Like Common Core math with its long-running development of core concepts, NGSS reframes science in terms of a small number of basic ideas that inform the scientific perspective. These include “structure and function,” “patterns,” “cause and effect,” “stability and change,” and “systems and systems models.”

“Even at a young age you’re going to have a workable knowledge of energy so you can apply it,” said Joseph Krajcik, a professor of science education at Michigan State and the lead author of the NGSS physical science standards. “At a third-grade level you might know that as something is moving, it has energy, and the faster it’s moving, the more it can do something. It’s a nascent idea of what energy is, and it builds across time.”

This slow-building approach is at odds with some aspects of public education. It’s not uncommon for districts to require that each class period address a discrete objective, and teachers are expected to measure whether students learned it at the end of the period. The authors of Common Core math and NGSS don’t see their disciplines fitting into that structure.

“One insight we got is that there’s almost no mathematics worth learning that breaks into lesson-size pieces,” Daro said. “You have a three- or four-week sequence and treat it with coherence. It’s about systems and structures, not small facts and small methods. It’s about how it all works together.”

Schweingruber agrees. “Some of these ideas in science are hard to get quickly,” she said. “It took humans hundreds of years, so why would kids figure them out quickly?” The same mismatch between the standards and the way public education is set up occurs in another major area: assessments. Because standardized tests often drive instruction, it’s hard to expect teachers to teach differently unless students are tested differently.

“Teachers are starting to make changes in their classrooms,” Schweingruber said, “but if they’re still looking out for a large-scale test their kids will have to take that is completely contrary to what they’re doing in the classroom, that can be problematic.”

There is progress in that direction. Two recent initiatives, the Partnership for Assessment of Readiness for College and Careers and the Smarter Balanced Assessment Consortium, are developing standardized tests that incorporate a greater variety of question types, like constructed response questions in which students are asked to explain their reasoning, and technology-enhanced questions in which, for example, students manipulate a line on a graph to make it match a given algebraic function. “You’re seeing a deeper push for conceptual understanding and the ability to apply mathematics, and assessments are on their way to becoming equipped to actually assess that,” said Robert Kaplinsky, a math teaching specialist and consultant in Southern California.

Chuck Reynolds

Visit the Kairos webiste

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.